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Abstract

This seminar paper compares various prediction models within a big data context. The classic OLS
Regression is often the first choice for many projects, but applying an OLS Regression indiscrimi-
nately to the whole data set is within a big data context often either infeasible due to perfect mul-
ticollinearity or leads to low prediction quality due to overfitting/imperfect multicollinearity. The
challenge of having too much data to achieve good predictions is a relatively modern problem, and
several approaches have been developed to address it. This paper compares some of these approaches,
including shrinkage estimators, which will receive particular attention, a principal components based
OLS Regression, and specific OLS models that utilize handpicked regressors. The findings show that,
in terms of out-of-sample MSPE (MSPE, , ;) minimization, the implemented shrinkage estimators,
namely Ridge Regression and LASSO, can achieve small but persistent improvements compared to
an OLS Regression based on subject matter considerations or a PCA-based OLS Regression. No-
tably, this does not translate to per unit of time MSPE, , ; minimization, which persistently occurs
with an OLS Regression that utilizes handpicked regressors. On the other hand, relying on hand-
picked regressors is prone to subjectivity and uncertainty about optimality. PCA-based OLS Regres-
sions solve these problems and lead to optimal results for a MSPE,, , ; minimization per unit of time
if subjectivity has to be eradicated. This indicates that alternative approaches, such as shrinkage es-
timators or a PCA-based OLS Regression, achieve significant improvements compared to a standard
OLS Regression. However, different approaches have distinct strengths and weaknesses.
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1 Introduction

In this paper, I explore the issue of ’Predictions with Many Regressors and Big Data,” focusing primarily
on shrinkage estimators. The goal is to examine the theoretical foundations of shrinkage estimators, to
apply them to a real dataset, and to compare them with alternative methods. This approach and the se-
lection of estimators implemented are based on Stock and Watson (2020, Chapter 14). Additionally, this
will demonstrate the advantages of shrinkage estimators compared to alternative OLS-based methods and
provide insights into when these estimators are especially useful or less effective. To be more precise,
I implemented Ridge Regression and LASSO as shrinkage estimators, PCA-based OLS Regressions,
OLS Regressions based on handpicked variables, and a simple mean. All of these models were imple-
mented in R using no packages. I aimed to maximize prediction quality while predicting the average test
scores of schools in California. To measure prediction quality, I used the mean squared prediction error
(MSPE).

2 Theoretical Foundations

2.1 Norms

After this brief introduction, I would first like to establish some theoretical foundations before discussing
the implementation of the various methods and the results in later sections. I begin with the definition of
a norm, which is based on Deitmer (2021, Chapter 8, page 183).

Definition 1 Norm Given a vector space V over R, a norm is a function || - || : V. — R with the fol-

lowing properties for vvw € V:

1. Positive Definiteness: For all v € V, it holds that ||[v|]| > 0 and ||v|| =0 <= v=0

2. ForallveVand A € R, it holds that [|Av]| = |A]||v||

3. Triangle Inequality: For all v,w € V, it holds that |[v+w]| < ||v|| + ||w||
A vector space V together with a norm N (x) is called a normed vector space and is denoted by (V,N(x)).
This concept will be of particular importance in later sections. It is essential to understand that a norm
represents the measure of distance from the origin. Depending on the norm, distances are measured

differently, and there are various norms. For the following considerations, a specific type of norm will

be particularly relevant, namely the so-called L”-norms, which have the form:

1
n »
Lr = (Z di|p>
i=1

The most prominent LP-norms are the L; norm (also known as the Taxicab or Manhattan norm), given
by Y%, |di|, and the L, norm (also known as the Euclidian norm), given by /Y% ; diz, see Hansen (2022,
Chapter 29, page 943). Both will be needed in the following sections.

2.2 Mean Squared Prediction Error (MSPE)

To compare the prediction quality of different models, I use the MSPE. The following definition is based
on Stock and Watson (2020, Chapter 14, page 518):



Definition 2 Mean Squared Prediction Error (MSPE) The (theoretical) mean squared prediction error
is the expected value of the square of the prediction error that arises when the model is used to predict

an observation not in the data set

A

MSPE = E((Yo.o.s - Y(XOAO.S))Z)
An estimator of the MSPE is MSPE = % Y (vi—9:)?

From the perspective of minimizing the MSPE, the best possible prediction is the conditional mean - that
is E(Y,.,0.5/X0.0.5), see Stock and Watson (2020, Chapter 14, page 518). Because of this the MSPE has
become a commonly used measure of prediction quality and will also be the tool I primarily use. Being
precise in the nomenclature is important here because otherwise confusion is inevitable. When writing
MSPE I refer to the expected value E((Y, .5 — ¥ (X,05))?), while when writing MSPE; ; 1 refer to an
estimate of the MSPE (% Yo (vi — $i)?), that is calculated using “pseudo” out-of-sample data, utilizing
only the training data set and k-fold Cross Validation. When writing MSPE, , ; I refer to an estimate of
the MSPE as well, but one that is calculated using “real” out-of-sample data, i.e., utilizing the testing
data set. The relevance of this distinction will become clearer during the sections 3 and 4, but should be

kept in mind throughout the paper.

2.3 Ordniary Least Squares (OLS)

The following definition of the OLS estimator is based on Stock and Watson (2020, Chapter 6, page
221):

Definition 3 Ordinary Least Squares Estimator (OLS) The estimator 3 = (ﬁo, 31 yeees [§k) for the co-
efficients of the conditional expectation function E(Y |X), where E(Y|X) is assumed to be linear in the
coefficients and therefore have the form E(Y|X) = Bo+ Bix1 + ... + Bixx, is referred to as the OLS esti-

mator if it is the solution to the following optimization problem:

min }_ a7 1]
B i=1
Where Y1 62 =Y (vi— Bo—PBixi—...— Bexe)* = (Y = XB) (Y —XB). The solution to the optimization

problem above is given by Bors = (X'X)~1X'Y.

Given this minimization problem, the name of the estimator becomes clear; we find the regression line
that minimizes the sum of the squared residuals, where the residuals are defined by i#; = y; — ¥;. This
optimization problem is equivalent to the linear projection of Y = (yy,...,y,) onto X = (X1, ..., Xy), where
X; = (xi1,...,Xi n), compare Wickens (2014, Chapter 4, page 46). The OLS estimator is the classic esti-

mator, which is implemented in almost all cases.

However, the OLS estimator particularly shows weaknesses in contexts with many regressors. In such
situations, it can even completely break down, making it uncomputable. When there are more regressors
than observations X'X would no longer be invertible, and thus Bors = (X'X)~!X’Y would no longer
be computable (this problem is referred to as perfect multicollinearity). Even if OLS was computable

because there are fewer regressors than observations, as the number of regressors approaches the number



of observations, it leads to what is known as imperfect multicollinearity, which is often referred to as
overfitting. The OLS estimator tends to overfit the sample data in such a setup, leading to poor out-
of-sample prediction quality. Therefore, a simple, thoughtless OLS Regression, which uses all possible
variables, can lead to extremely poor prediction quality. Accordingly, one has to turn to alternative

approaches when dealing with these setups.

2.4 Shrinkage Estimator
2.4.1 General Principle

The class of shrinkage estimators share a fundamental characteristic: they introduce bias but can thereby
reduce variance. This characteristic is often referred to as a “’bias-variance tradeoff”. As a result, they
provide an estimator that, while biased, has lower variance than classical estimators. This can lead to an
improved MSE when the variance is high and the bias is relatively low (the MSE of an estimator @ for
6 is defined as MSE(8) = E((6 — 6)?) = Var(6) + (E(6) — 6)?). The following example of a simple
shrinkage estimator is based on Hansen (2022, Chapter 28, page 884). It can be described as follows:

Example 1 Simple Shrinkage Estimator For an estimator 0 with Var(0) = 6% and expectation E(0) =

0, the estimator is defined as

~ A

0=(1-w)6, we (0,

—
~—

For this estimator, it holds that Var(8) = (1 —w)?06? and E(8) = (1 —w)8. Thus, we have MSE(0) = 6
and MSE(0) = (1 —w)?62 + (w8)?

We can improve the MSE relative to the unbiased estimator when 8 is close to 0 and o2 is large. A
generalization of this idea leads to the so-called Stein shrinkage estimator, see Hansen (2022, Chapter
28, page 885). It should be noted here that, as prediction isn’t a concern in this setup, the MSE has been
used. Nonetheless this example illustrates the general principle of shrinkage estimators and assuming
that (X, 0.5, Y,.0.5) are randomly drawn from the same population distribution as the estimation sample, a
similar argument could be used utilizing the MSPE and estimating E (Y, s — ¥ (Xo.0.5))?), see Stock and
Watson (2020, Chapter 14, page 519).

2.4.2 Ridge Regression

The so-called Ridge Regression is the first shrinkage estimator that I will examine in detail. The follow-
ing definition is based on Stock and Watson (2020, Chapter 14, page 524):

Definition 4 Ridge Regression The estimator ﬁ = (ﬁo, ﬁl yeees ﬁk) for the coefficients of the conditional
expectation function E(Y|X), where E(Y |X) is assumed to be linear in the coefficients and therefore have
the form E(Y|X) = Bo+ Bix1 + ... + Bixx, is referred to as Ridge Regression if it is the solution to the
following optimization problem:
n k
mjnZﬁ?+kZ ]2 2]
B i=1 j=1

Where Y3y i? + A X5 B = Yy (i — Bo— Bixi — .. — Biw)® + AL, B2 = (¥ = XB)' (Y —XB) +
A ZIJ‘-: ! ﬁjz The solution to the optimization problem above is given by Briage = (X'X + A1) 1X'Y.

This estimator can be viewed from two perspectives. On the one hand, as an ordniary optimization

4



problem, while OLS minimizes [1], Ridge Regression minimizes [2]. It introduces a “penalty term”,
AZIJ‘-:l sz, which inflates if single Bjs increase. On the other hand, it can also be understood as a
constrained optimization problem, where A is the Lagrange parameter. Thus, we optimize ), ﬁ,z
under the constraint Z’;zl ﬁjz = 7. Therefore the Lagrange function is given by .& (ﬁ,l) =Y, 12,2 +
A (Zl;:l ,3]2 — ’L'>, this is equivalent to optimizing [2], see Hansen (2022, Chapter 29, page 918). It is

important to note that there is a unique relationship between 7 and A, which can be expressed as

T=Y'X(X'X +AL) (XX +AL,) ' X'Y. 3]

Thus, any A can be translated into a specific constraint under which one optimizes since every T repre-
sents a constraint to the length of Brigee: ||Bridge|| = VT = ZI;':1 ﬁ,%i dge.j» S€¢ Hansen (2022, Chapter
29, page 945). It is also important to remember that we use the Euclidean norm, or L, norm, to formulate
this constraint. The rationale behind using this optimization problem is the utilization of a bias-variance
tradeoff”. By introducing the constraint, the solution lies closer to zero (with a sufficiently strict con-
straint, i.e., a small 7), thus introducing a bias (distortion of the previously unbiased OLS estimator).
However, the variance of this estimator may be sufficiently smaller than that of the OLS estimator, re-
sulting in an overall reduction in MSPE. Furthermore this estimator can always be implemented even
if there are more regressors than observations, this is because X'X + A/ can be inverted even if X'X is

singular.

2.4.3 Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO is the next shrinkage estimator I would like to examine more closely. The following definition
is based on Stock and Watson (2020, Chapter 14, page 528)

Definition 5 Least Absolute Shrinkage and Selection Operator (LASSO) The estimator 3 =( Bo, 31 s e Bk)
for the coefficients of the conditional expectation function E(Y |X), where E(Y|X) is assumed to be linear
in the coefficients and therefore have the form E(Y|X) = Bo+ Bix1 + ... + Bxx, is referred to as LASSO

if it is the solution to the following optimization problem:

n k
mjnZﬁ?%—)L Y 1B;l (4]
B i=1 j=1
Where Yy i + A X5 |Bjl = Ximy (i — Bo— Bixi — ... — Ben)? + A XA, B = (¥ =X B)' (Y —XB) +

AZ];:l |l§/|

Similar to Ridge Regression, LASSO modifies the optimization problem for calculating the beta vec-
tor by introducing a “’penalty term”. This can be formulated as a Lagrange optimization problem with
the Lagrange function Z(B,A) = "L+ A (Z’;: 1] B il — ’c) , Which is equivalent to optimizing [4], see
Hansen (2022, Chapter 29, page 918). It is noteworthy that the only change we make relative to Ridge
Regression is the norm used to measure the length of the beta vector. Once again, we limit the length of
the beta vector, but this time the length of the beta vector is measured using the Taxicab/L; norm. The
second part of the name of LASSO is due to a specific characteristic of LASSO. It utilizes the L; norm,
which leads to "not smooth” constraints, and this again leads to the coefficients either being zero or
comparatively large, this characteristic is often referred to as “variable selection”. Therefore, some argue
that the interpretability of LASSO is better compared to Ridge Regression, see James, Witten, Hastie and



Tibshirani (2021 Chapter 6, page 242). But the aim of this paper is maximization of prediction quality,

not interpretability, therefore these concerns aren’t further discussed in this paper.

2.5 Principal Component Analysis (PCA)

In contrast to the previously discussed Ridge Regression and LASSO, a PCA-based OLS Regression
takes a fundamentally different approach. The problems originally encountered with the OLS estimator
were perfect or imperfect multicollinearity. One approach therefore is to retain as much information as
possible while reducing the number of regressors. We can understand information as the “variance/co-
variance structure” of the data. Therefore, the aim is to capture as much variance of the original dataset
as possible with as few regressors as possible. This is done while no longer necessarily using the original
regressors but allowing any normed linear combination to serve as regressors under the constraint that
these linear combinations are orthogonal to each other. These new regressors are then called principal
components (PC). Then, the first k PCs are used for an OLS Regression as regressors, see Stock and
Watson (2020, Chapter 14, page 532). This naturally reduces the issue of imperfect multicollinearity as
only a (k < n)-dimensional subspace is spanned, and the data vectors are now orthogonal to each other.
The following theorem is based on Johnson and Wichern (2014, Chapter 8, page 432):

Theorem 1 Principal Component Analysis (PCA) Let ¥ be the covariance matrix associated with
the random vector XT = (X1,Xa,...,X,). Let £ have the eigenvalue-eigenvector pairs (A1,e1), (12, €2),
oy (Ap,€p), where Ay > 2y > --- > A, > 0. Then the j-th population principal component is given by

Yj:eJT-X:eﬂXl—|—ej2X2—|—---—|—eijp, j=1,...,p.

Thereby Y| is the linear combination, with the weighting vector having unit length, of X with the highest

possible variance, under the constraint that Y; has to be orthogonal to (Y1,...,Y;_1)

3 Implementation

3.1 Packages

Even so there are several packages available for implementing the shrinkage estimator, the most promi-
nent one being glmnet, | implemented everything from scratch, without any packages. This allows me
to fully decide how to implement these models. This problem of control is often overlooked, for example

glmnet uses a scaled optimisation problem:

N P
min | Ry(Bo.B) = min [;Vz(y,-—ﬁo—x?ﬁ)zmj_zl[;u—a)ﬁ}wwjr]

(Bo,B)ER! Bo,B)ERPH i=1

for estimating LASSO and Ridge Regression, as extreme cases of Elastic Net, compare Friedman, Hastie,
and Tibshirani (2010). This deviates from [2] and [4]. For similar reasons, I also decided to use no
packages for other applications implemented in this paper.



3.2 Training and Testing
3.2.1 Training Data Set and Testing Data Set

Initially, I randomly divided the data set into two equally large subsets, a “training data set” and a
“testing data set”. Most calculations took place on the training data set. This includes the estimation
of the coefficients, the k-fold Cross Validation, and the optimal A estimation, all topics I will further
comment on in the following sections. Solely the calculation of the MSPE, , 5, which is used to compare
the prediction quality of the different models, took place on the testing data set, using the coefficient

vectors estimated on the training data set, based on the optimal A, estimated on the training data set.

3.2.2 Optimal A Algorithm (1)

When it comes to implementing alternative prediction models besides OLS, the main difficulty usually
is not the implementation of the estimator, as it is available in closed form for Ridge Regression and
PCA-based OLS Regressions. Rather, the more complicated question is how the externally specified
parameters should be set. For Ridge Regression and LASSO, the issue arises regarding the constraint
under which the optimization should be conducted. For this “optimal A estimation” I implemented two

algorithms:

The first algorithm for the optimal A estimation is a kind of ”’grid search” (this algorithm will be referred
to as (1) during the rest of this paper). I calculate an in-sample MSPE (MSPE; ;) for As between 1 and
100,001. The step size chosen depends on the computational power of the computer; I decided on a
step size of 20,000, resulting in a total of 5 MSPE; s calculated for 5 different constraints. After this is
done, I select the A that resulted in the lowest MSPE; , as well as the As immediately to the right and
left of this A,,;,,. Next, I calculate As within this interval using a step size of 10,000 and compare their
MSPE; s, choosing the A with the lowest MSPE; ; from this set. This process continues with the interval
stretched from the A before to the A after A4,,;, of the specific stage, for the step sizes of 5000, 2500,
1250, 625, 125, 25, 5, and finally 1. Ultimately, one obtains the A from the natural numbers that has the
lowest MSPE; g, provided that the MSPE; ; values exhibit a quadratic structure as a function of A, which
is usually the case, see Stock and Watson (2020, Chapter 14, page 526).

3.2.3 Optimal A Algorithm (2)

The second variant I implemented is based on Kascha and Trenkler (2015) (this algorithm will be re-
ferred to as (2) during the rest of this paper). The idea is somewhat different from (1). Instead of simply
generating As over a large range of potential values and then zooming in on the “promising” As, this
approach first narrows down the set of potential constraints based on ||Bors||. Then, As are calculated on
a logarithmic scale, allowing for more As for small values and fewer for large values. The optimal A, in
the sense of MSPE; ; minimization, from this set is then used. More precisely formulated, we can choose
« such that:

k
|| Briggel| = VT =0, | ¥ B35 = allBowsl| <= 7= (allBos||)?
j=1

Since [3] establishes a connection between T and A, we can derive the constraint relative to ||Bors|| and

thus conclude on A, and now calculate As on a logarithmic scale between 0 and A,,.,. I decided to



choose 0.01% of ||Bors|| as /7 to ensure a sufficiently strict constraint.

3.2.4 Further Considerations and Usage of (1) and (2)

The specific setups will be discussed in more detail in section 4.1, but there are a few important consid-
erations regarding the setups when it comes to implementation. First of all it is important to note that
(2) assumes that OLS is potentially computable, which is only the case for the 1726 regressors setup.
Therefore, I computed the T for 1726 regressors and used this 7 as a guideline for implementation of
(2) in cases where OLS couldn’t be computed due to perfect multicollinearity. It should be noted that
(1) has been used to implement Ridge Regression in the case of 2095 regressors, while (2) has been
used to implement Ridge Regression in the case of 1726, 2095, 2215, and 2515 regressors and LASSO
in the case of 2095 regressors, this is due to the simpler implementation of (2) and its more adjustable

computational cost.

3.2.5 k-fold Cross Validation

Essential for the implementation of the various methods is the estimation of the MSPE; s, as they are
utilized by (1) and (2) to estimate the optimal A. Therefore, I utilized k-fold Cross Validation, but there
are alternative approaches using information criteria, which I have not implemented, see Kascha and
Trenkler (2015). The idea behind k-fold Cross Validation is to divide the dataset into & random parts
of the same size, then combine k — 1 datasets, which work as a pseudo training data set. Dividing the
training data set into a pseudo training data set (k-1 parts) and a pseudo testing data set (kth part) is how
an estimation of the MSPE (MSPE; ;) solely with the training data set is accomplished. To be a bit
more precise, for each k, the MSPE; . is computed, and the mean of the MSPE; ;s is the MSPE; ; for
a specific A. This serves as an estimate for the MSPE of the specification. This estimation procedure
should ensure that the selected configuration performs well across different data splits. It’s common
to choose k = 10, this has been shown to be a good compromise between computational demand and

accuarcy, therefore I decided to use k = 10 as well, see Hansen (2022, Chapter 29, page 869).

3.3 Ridge Regression Implementation

The implementation of Bgiqe. is comparatively simple, once one has decided which algorithm to use. As
Bridge has a closed-form solution, it is possible to just compute this estimator using matrix operations
in R. When implementing (2), it is important to decide how many As to calculate. Based on Kascha
and Trenkler (2015) T decided to calculate 100 As on the logarithmic scale, for the Ridge Regression

applications.

3.4 LASSO Implementation

The estimation of the optimal A for LASSO follows similar considerations as the estimation of the op-
timal A for Ridge Regression. However, LASSO was implemented only using method (2) due to the
significant computational effort associated with LASSO. Additionally, I had to reduce the number of
As computed from the normally implemented 100 to 6. Another challenge was the implementation of
LASSO itself. While the Ridge Regression coefficient vector has a closed-form solution, this is no longer
the case for LASSO due to the use of the L; norm. Therefore, LASSO must be numerically approxi-
mated without inducing too much computational effort. I accomplished this using the ‘optim*‘ function



in R, which numerically computes the optimum of a function. Once this is done, the implementation is

fundamentally the same as for Ridge Regression.

3.5 PCA Implementation

The estimation of the optimal number of Principal Components (PCs) is heavily based on (1), but this
time, the maximum number of possible PCs is known (equal to the number of regressors). Additionally,
the result must come from the natural numbers, making (1) particularly suitable for estimation. Accord-
ingly, I implemented (1) with step sizes of 500, 50, 10, and 1. Calculating the optimal number of PCs
simply builds upon the methods used for implementing Ridge Regression. However, alternative methods
for determining the optimal number of PCs exist, like utilizing a scree plot or the percentage of explained
total variance. Nonetheless, I decided to use (1), as it allows for a decision on the number of PCs to use

without any subjective judgment or rule of thumb that might be suboptimal for the specific data set.

3.6 Percentile-Bootstrap Confidence Intervals (PBCI)

Using the methods described so far only a point estimation would be possible for the different models
and metrics. This is insufficent as it easily becomes unclear if an MSPE, , ; improvement is structural
or only due to randomness. Therefore I implemented PBCls, they are constructed for an estimator
T, for 6 by generating so-called “’bootstrap samples” of the original data set. This is accomplished
by randomly drawing (with replacement) observations from the n original observations n times. This
process is repeated N (in my case 100) times so that now N new n-dimensional samples exist, which
were constructed by randomly drawing observations from the original data set. On each of these N
bootstrap samples, the estimator 7, is computed (7}, ;*). If this is done, the interval [5%-quantile(T}, ;*),
95%-quantile(T,, ;*)] is the asymptotic 90% confidence interval (CI) for the estimator 7, if a monotone
transformation U = m(T;,) exists such that U ~ N(¢,c?), where ¢ = m(8), this approach is based on
Wasserman (2006, Chapter 3, page 34). Using these PBCIs I estimated the 90% Cls for the various
Ridge Regression and OLS setups, implementation for a PCA-based OLS Regression or LASSO wasn’t
possible due to the computational demands of these methods. Additionally, it is very important to stress
that it is unclear whether the mathematical assumptions are rigorously fulfilled in my case. Nonetheless,
the estimated CIs should at least give a rough idea of the prediction quality one should expect and allow

to differentiate more clearly between random differences and structural differences.

4 Empirical Prediction Comparison

4.1 Data and Setup

The dataset I worked with is the ca_school_testscores dataset. The full dataset consists of data gath-
ered on 3932 elementary schools in the state of California in 2013. The dependent variable I examined

is a linear combination of Mathematics scores and English/Language-Arts scores, defined as follows:

score; = o -math; + (1 — &) - elarts;

This allows for weighing how much emphasis I want to place on each score. Stock and Watson decided
touse o = 0.5, see Stock and Watson (2020, Chapter 14, page 517). The data exists at the school, district,
and zip code levels, and there are 65 base variables, 5 of which are binary. Additionally, it should be
noted that all regressors were standardized, and the dependent variables were mean-centered to ensure



comparability, see Stock and Watson (2020, Chapter 14, page 519). Because I divided my original data
set into a training and a testing data set, it’s infeasible to compute OLS for any configuration that includes
more than 1966 regressors. My basic model includes 2095 variables, generated by squaring, cubing,
taking the natural logarithm, and creating interaction terms, therefore OLS can’t be computed for this
setup. A second configuration includes only 1726 variables, derived by modifying the base variables
(excluding some less “meaningful” ones) and removing the natural logarithm as a transformation. In this
second configuration, an OLS Regression is possible, but it suffers from high imperfect multicollinearity.
Therefore, I can directly compare OLS with Ridge Regression using the same regressors and dependent
variable. A third configuration adds the 4th and 5th powers to the base configuration, which leads to 2215
regressors. Furthermore a fourth configuration implements additional nonlinear transformations of the
base variables, including all powers up to the 10th power, this leads to 2515 regressors. My comparison
instrument between the various models is the MSPE, , ;.

4.2 Results

4.2.1 General Comments

In the following, I will compare the different models and approaches on various levels. I will use the
MSPE, , s as a measure for the prediction quality. Table 1 and Table 2 provide a compact summary of
the results of my work. All data and results referenced can also be found in the RMarkdown output and

Code provided with this paper.

Table 1: MSPE and Absolute/Relative Improvement

A
Model MSPEY®  MSPEJYs MSPEYY MSPEZY: MSPEY:, —M3ffues “Mlsssts
OLS 1726 1036993.0000  295545.0000  187743.6000  49787.3200 130819.8000
Average 1720.9700 1294.4470 982.5172 761.9378 557.9097 100.00% 0
Ridge 1726 806.8532 574.7741 390.1871 219.1890 152.6194 37.42% 0.1095
Ridge 2095 (1)  811.1861 587.0026 372.9812 248.0774 151.8341 38.04% 0.0459
Ridge 2095 (2)  832.9751 563.2653 384.5102 240.6322 144.5796 37.71% 0.0350
Ridge 2215 822.4967 583.7683 392.0700 230.1321 150.7986 38.01% 0.0300
Ridge 2515 828.7387 577.8676 376.2091 244.9363 154.0259 38.17% 0.0211
LASSO 2095 837.2508 626.3619 385.9010 239.3404 151.8766 39.00% 0.0092
PCA 2095 1176.9550 981.2556 619.0997 536.5463 271.6690 65.26% 0.7478
OLS1 1689.9000 1273.2200 972.0042 747.8535 553.8317 98.58% 16.1945
OLS2 1294.4970 976.8594 694.8502 483.1914 321.6527 68.50% 309.3462
OLS3 923.0036 664.9383 434.3240 276.5282 167.2922 43.10% 570.3391
OLS4 879.2932 613.7437 405.5047 257.2242 155.3513 40.28% 601.3329
OLSS5 871.5299 614.4588 404.8539 255.8196 156.9732 40.21% 602.8293
OLS6 867.8640 608.3939 406.0448 255.2433 156.8461 40.07% 604.6779
OLS7 862.9454 603.0430 404.2722 251.3065 153.8380 39.69% 608.4753
OLS8 863.7931 604.4703 400.8004 250.2476 153.2851 39.60% 609.0370
OLS9 864.6583 608.7980 401.6793 249.9050 153.1618 39.68% 607.9159
OLS10 865.4471 608.1719 400.9014 249.1077 152.8764 39.63% 608.2554
OLSI11 874.0754 606.1539 399.3613 247.8264 152.3697 39.62% 607.5990

Note: The R command system.time$elapsed + 1 is used to measure computation time. The values shown are based on the average MSPE, ,
improvement over all 5 dependent variables. The percentage numbers refer to the proportion of the Mathematics scores.

4.2.2 Variance Differences

It is immediately apparent that there are enormous differences in MSPE, , ; values across the depen-
dent variables. The MSPE, , s values for the pure English scores amount to on average 19.85% of the
MSPE, , s scores for the pure Mathematics scores. This is primarily explained by the variance of the
English and Mathematics scores. It turns out that Varyanemaries = 1711.173 and Varg,gisn = 581.6659,
making the variance of the English scores only about 33.99% of the variance of the Mathematics scores.
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Table 2: MSPE-Ratio 90% Confidence Intervals

MSPELY% MSPE]3% MSPEY% MSPEZ) MSPEJ%. MSPE,
Model MSPE yy, MSPE py, MSPE 4y, MSPE pyy MSPE 4y, overall MSPE pyy
Ridge 1726 [0.4260,0.4806]  [0.3865,0.4386]  [0.3351,0.3809]  [0.2747,0.3120]  [0.23730.2690]  [0.3323,0.3753]
Ridge 2095 (1) [0.4281,0.4783]  [0.3967,0.4438]  [0.3436,0.3864]  [0.2717,0.3057]  [0.2358,0.2649]  [0.3362,0.3753]
Ridge 2095 (2)  [0.4333,0.4855]  [0.3945,0.4407]  [0.3428,0.3854]  [0.2703,0.3046]  [0.2393,0.2681]  [0.3367,0.3763]
Ridge 2215 [0.4340,0.4817]  [0.3964,0.4406]  [0.3438,0.3830]  [0.2739,0.3069]  [0.2360,0.2679]  [0.3383,0.3749]
Ridge 2515 [0.4367,0.4867]  [0.4030,0.4482]  [0.3458,0.3841]  [0.2787,0.3067]  [0.2417,0.2653]  [0.3416,0.3778]
OLSI1 [0.9332,1.0307]  [0.9581,1.0554]  [0.9602,1.0570] ~ [0.9294,1.0296]  [0.9634,1.0830]  [0.9544,1.0483]
OLS2 [0.7232,0.8056]  [0.7078,0.7907]  [0.6667,0.7446]  [0.6022,0.6707]  [0.5771,0.6507]  [0.6587,0.7315]
OLS3 [0.5115,0.5749]  [0.4767,0.5346]  [0.4173,0.4650] [0.3393,0.3767]  [0.2991,0.3326]  [0.4112,0.4546]
OLS4 [0.4734,0.5364]  [0.4378,0.4959]  [0.3833,0.4304]  [0.3125,0.3499]  [0.2770,0.3105]  [0.3790,0.4236]
OLS5 [0.4716,0.5337]  [0.4385,0.4936]  [0.3844,0.4292]  [0.3112,0.3493]  [0.2761,0.3107]  [0.3798,0.4209]
OLS6 [0.4671,0.5311]  [0.4310,0.4920]  [0.3762,0.4297] ~ [0.3051,0.3462]  [0.2735,0.3112]  [0.3723,0.4209]
OLS7 [0.4655,0.5268]  [0.4300,0.4890]  [0.3745,0.4248]  [0.3057,0.3431]  [0.2701,0.3041]  [0.3705,0.4161]
OLS8 [0.4633,0.5300]  [0.4277,0.4886]  [0.3744,0.4227]  [0.3024,0.3425]  [0.2660,0.3016]  [0.3701,0.4150]
OLS9 [0.4617,0.5271]  [0.4259,0.4881]  [0.3726,0.4215]  [0.2993,0.3400]  [0.2633,0.2994]  [0.3686,0.4135]
OLS10 [0.4625,0.5276]  [0.4268,0.4869]  [0.3730,0.4206]  [0.2983,0.3380]  [0.2617,0.3001]  [0.3687,0.4130]
OLS11 [0.4620,0.5285]  [0.4258,0.4877]  [0.3711,0.4208]  [0.2970,0.3367]  [0.2622,0.3010]  [0.3669,0.4135]

Note: The CIs shown are PBCISs, as discussed in section 3.6, N = 100 and the percentage numbers refer to the proportion of the Mathematics
scores.

Accordingly, English scores are easier to predict than Mathematics scores. However, it is not entirely
clear whether this is the only reason for the difference. It might be that English scores are not only easier
to predict due to their lower variance but also because the dispersion in English scores may be struc-
turally easier to predict with the observed variables compared to Mathematics scores. The data pertain to
the state of California, with information available at the district, zipcode, and school levels. Moreover,
data on foreign students, English learners, income, and ethnic diversity is available. Perhaps these kind
of variables are especially potent for predicting English scores rather than Mathematics scores.

4.2.3 OLS 1726

Aside from this general finding regarding the nature of the results, it is also striking how a simple OLS
Regression collapses when applied indiscriminately to all data due to the problems discussed in 2.3.
For the 1726 regressors setup the MSPE, , s of the Ridge Regression is on average about 0.21% of the
MSPE, , s of the simple OLS Regression. This indicates a 99.79% reduction in MSPE, , ;. While this
outcome was expected, it underscores how problematic the unconsidered use of OLS Regression can
be. It also highlights that alternative estimators, such as shrinkage estimators, can indeed fulfill their
purpose and massively reduce the estimator’s variance, leading to a reduction in MSPE, , ; despite the

introduction of bias.

4.2.4 Ridge Regression: Further Nonlinearities and Alternative Algorithms

However, the question arises regarding the extent to which the introduction of more nonlinear transfor-
mations improves the predictive quality of a shrinkage estimator, here Ridge Regression. Figure 1 shows
the estimated 90% Cls for the various Ridge Regression setups, it can be clearly seen, that there is no
relevant difference between the outcomes of the different setups. This is not surprising given that even
the ”smallest” model accesses 1726 different variables. Thus, the introduction of additional variables,
constructed from the original 65 base variables, does not yield meaningful added value. Furthermore it
can also be seen that there is no relevant difference between the outcomes of (1) compared to (2). If one
takes the average of the differences of the on the bootstrap sample estimated MSPE-Ratios between (1)
and (2), the result is -0.093% points, which isn’t relevant. This implicates that both algorithms lead to
very similar results and can be used interchangeably, at least for this data set and model setup.
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Figure 1: 90% Confidence Intervals, Ridge Regression

4.2.5 Alternative Models: Average

Another important question is whether simpler less computationally expensive methods or alternative
shrinkage estimator lead to similar results or even outperform Ride Regression. I will proceed from the
simplest to the more complex methods and compare the results relative to those of Ridge Regression.
I began with the simplest possible approach, namely using a simple mean. I took the average of the
average test scores of the schools and used that as a naive estimator for the means of the schools not in
the training dataset, i.e., those in the testing dataset. This simple estimator achieves an average MSPE, , s
of about 0.62% of the MSPE, ,; of the simple OLS Regression with 1726 variables. A significant
MSPE, , s improvement through a very simple alternative estimator has been achieved. It illustrates
that simpler models can yield better results, especially in a context with many regressors and big data,
where OLS can quickly lead to detrimental overfitting. Nevertheless, it is evident that the average still
performs significantly worse than the Ridge Regression with 1726 variables. The MSPE, , ; of the Ridge
Regression with 1726 variables is on average about 37.42% of the MSPE, , s of the average (MSPEjy,,).
Thus, Ridge Regression can again consistently deliver strong MSPE, , s improvements. This is good
news, as complex models often only lead to marginal improvements relative to a simple mean. But it
should be noted that per second of additional computation time Ridge Regression 1726 only leads to a

0.1095 decrease in MSPE, , ,, relative to using the average.

4.2.6 Alternative Models: OLS Regression with Handpicked Regressors

The next step in the complexity hierarchy of the implemented models is the use of OLS models that
only utilize a subset of all variables. OLS tends to suffer from the problems described in section 2.3.
Fortunately one is not obliged to pass all variables to the OLS Regression. Therefore I provided the
OLS Regression only with variables or groups of variables that I believe should have a particularly
high explanatory power. I start with one variable and gradually add more variables/groups of variables.
The resulting models are called OLS1 to OLS11. Table 3 summarizes the selected groups of variables
and the corresponding regressors. The first variable I introduced is the student-teacher ratio. In fact, a

simple OLS Regression that includes only the student-teacher ratio achieves MSPE, , s values averaging
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98.58% of MSPEy,e. This is a very similar result to using the average. Next, I introduced the variables
average years of teaching, instruction per student expenditure, median income, and ethnicity diversity
index, as a second set of important general characteristics. This OLS2 model achieves MSPE, , ; values
averaging 68.5% of MSPEy,,. The introduction of these additional variables, which measure income,
teacher experience, and to some extent migration, results in a strong reduction in MSPE, , ;. Next, |
add the variables free or reduced meals, English learner, free meals, enrollment, and English language
proficient. These variables are somewhat more specific than the previously introduced group but mainly
measure English proficiency, income, and migration (or correlate with these factors, therefore a third

”general characteristics group™).

Table 3: Variable Groups and Corresponding Regressors for the OLS Specifications

Groups Variables 1 2
1. General Characteristics 1 Student-teacher ratio 1 11
2. General Characteristics 2 Average years of teaching, instruction per student expenditure, median income, eth- 2 5

nicity diversity index
3. General Characteristics 3 Free or reduced meals, English learner fraction, free meals fraction, enrollment, En- 3 6

glish language proficient

4. Ethnicity Fractions Fraction of American Indian, Asian, Black, Filipino, Hispanic, Hawaiian, two or 4 4

more ethnicities, and not reported ethnicity

5. Teachers Number of teachers, fraction of first-year teachers, fraction of second-year teachers, 5 7

part-time measure

6. General Expenditures per Stu- Expenditure on instructional services, pupil services, ancillary services, community 6 8

dent services, enterprise expenditures, general administration, and plant services

7. Expenditure on Capital/Salaries  Certificated salaries, classified salaries, employee benefits, books and supplies, ser- 7 9

per Student vices & other OP expenditures

8. Age Fractions Fraction of 5 to 17, 18 to 24, 25 to 34, 35 to 44, 45 to 54, and 55 to 64 year olds 8 10

9. Population Total population one year or older, fraction of male population, fraction now married, 9 3
fraction now divorced, fraction now widowed

10. Education Fraction of people with a high school diploma, some college or AA, bachelor’s de- 10 1
gree, and graduate or professional degree and fraction of housing owner

11. Migration and Unified Fraction of people moved in from the same county, different county, different state, 11 2

from abroad, and whether the district is unified

Note: 1 and 2 refer to the ordering at which the different groups were added. 1 is, therefore the original ordering of adding first the first group,
then the second, and so on. 2 is an alternative order of adding the groups to the OLS Regression

This OLS3 model achieves MSPE, , ; values averaging 43.1% of MSPE,,,. Once again significant
MSPE, , ; improvements have been achieved through the introduction of new variables. From now on
I add more “specific” variable groups. I started adding “specific” variable groups, as the first 3 groups
reflect the variables I assumed to be particularly important; after adding them, I resorted to gradually
adding additional variables for specific characteristics. Initially, I achieved large MSPE, , ; improve-
ments through the introduction of additional variables, but after adding the first three general character-
isitcs groups, the MSPE, , ; improvements reduce drastically. OLS8 achieves MSPE, ,  values that aver-
age approximately 39.60% of MSPEy,,. Notably, this represents the minimum of the average MSPE, ,
values relative to the MSPEy,, values. The introduction of further variables and variable groups only
leads to increases or stagnation in the MSPE, , ; values. OLS8 achieves a 609.037 MSPE, , ; reduction
per second relative to using the average. Even so the fully linear OLS models with handpicked regressors
don’t reach the MSPE, , ; levels of Ridge Regression, they significantly outperform Ridge Regression
from a MSPE, , ; reduction per unit of additional computation time perspective. Nonetheless it has to
be emphasized that, especially when computing CIs for the OLS Regressions and the Ridge Regressions
and comparing them, it becomes clear that Ridge Regression structurally outperforms the OLS Regres-

sion, when it comes to an absolute MSPE, , ; reduction, as can be seen in Figure 2.
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Another extremely important point here is that even so OLS8 is the optimal linear OLS model from
an overall perspective, OLS7 is optimal for predicting 100% and 75% Mathematics score, while OLS11
optimal for predicting 50%, 25% and 0% Mathematics scores. It is not clear why this is exactly the case.
It seems very reasonable to assume that this might be due to the apriori structuring of the variable groups.
Changing the order of adding the groups or changing the makeup of the different groups will surely lead
to other outcomes. In this case, specifically, it might be the case that group 11, "Migration and Uni-
fied,” as well as group 10, ”Education,” are especially important for predicting English scores and less
important for predicting Mathematics scores, which leads to the difference in the optimal model setup,
based on the dependent variable. Allowing for a different ordering, like I did with 2, emphasizes this
point. For 2 the MSPE, , s development over the different setups is very different, it turns out that adding
group 4 “Ethnicity Fractions” and group 3 ”General Characteristics 3” explains the most, furthermore
the new "OLS11” now also leads to the lowest MSPE, , s for 75% Mathematics scores. Additionally, if
one decides on an alternative grouping of the variables based on the distances or correlations between
the variables, the results also change drastically. When utilizing the L; norm for example setup 9 is
optimal for 100% Mathematics score, setup 8 is optimal for 75% Mathematics score, setup 10 is optimal
for 50% and setup 7 is optimal for 25% and 0% Mathematics score. These points emphasize the biggest
issues with this solution to the problems described in section 2.3. It is unclear what setup is optimal,
subjectivity can’t be eradicated and domain knowledge is necessary, as well as the possibility to interpret

the different regressors and their meaning.
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4.2.7 Alternative Models: PCA-based OLS Regression

Previously, I only used those variables that appeared particularly sensible. Given potentially 2095 vari-
ables, this may not be optimal. To address the abovementioned issues, I now use PCs to capture as much
variance as possible with as few regressors as possible. The implementation process and the theory be-
hind this approach were already discussed in Sections 2.5 and 3.5. Following this approach the MSPE, ,, ¢
values average approximately 65.26% of MSPEy,,. As seen, using a PCA-based OLS Regression yields
worse results than a carefully selected OLS Regression based on domain knowledge, at least when con-
sidering MSPE, ,, s values for model comparison, as I have done so far. However, the very important

strength of this approach is that it is now possible to objectify the number of regressors used and their
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makeup. Furthermore this approach still significantly outperforms Ridge Regression from a reduction of
MSPE, , s per unit of additional computation time perspective. The PCA-based OLS Regression leads to
a 0.7478 MSPE, , ; decrease per second.

4.2.8 Alternative Models: LASSO

LASSO is the most complex alternative model to Ridge Regression that I implemented. As discussed
in section 2.4.3 LASSO is a shrinkage estimator as well, which utilizes the L; norm instead of the L,
norm. I implemented LASSO, only for the 2095 regressors setup, as this is the setup most similar to
the setup chosen by Stock and Watson, see Stock and Watson (2020, Chapter 14, page 517). LASSO
achieves MSPE, , ; values averaging 39.00% of the MSPE,,,. Therefore the results for LASSO in the
2095 regressors setup are slightly worse than the results of Ridge Regression. Furthermore LASSO
comes with a notable cost, which is the necessary computation time. LASSO has the worst results, when
it comes to MSPE, , s reduction per additional second of compution time. Here LASSO only lead to
a 0.0092 MSPE, , ; decrease per second. I even had to reduce the number of As computed to get to
reasonable computation times. Even so, the change in the number of As has been accounted for in the
MSPE, , ; reduction per unit of time perspective. It is unclear what absolute MSPE, , ; values could have
been reached if the normal number of As had been implemented. Still, LASSO performed very well from
the absolute MSPE, , s minimization point of view and worked as a selection operator. In this specific
case, LASSO set around 86.40% of the coefficients to zero, which shows that most regressors don’t yield

much additional explanatory power.

5 Discussion of Encountered Difficulties

Summarizing the encountered difficulties, it should be kept in mind that computation time has been
a critical issue throughout this work. I had to reduce the number of As computed for LASSO, and
therefore, it is unclear what absolute MSPE, , ; level would have been reached by LASSO if the normal
number of As had been computed. Comparability reduction due to a different number of As computed is
an issue. Additionally, no CIs were computed for LASSO and PCA-based OLS Regressions due to their
computational demands, an issue that could be addressed in a follow-up paper. Similarily it is important
to be aware of the potentially not fulfilled assumptions for the ClIs, it is unclear if such a monotone
transformation m(7,) exists as described in 3.6. Alternative approaches for Cls exist, like bias-corrected
PBClIs or normal distribution based BCIs, but they also need assumptions where it is unclear whether
they are fulfilled. Therefore, it would be worthwhile for a follow-up paper to dive further into this
issue and see if a construction principle exists for which it can be shown that the necessary assumptions
are fulfilled in this setup. Until this is accomplished, the CIs can only be used to get a rough idea of
what differences might be structural and what differences might be due to randomness. Furthermore, all
numbers concerning MSPE, , ; reduction per second are based on my PC, its hardware, the code written
by me, and the coding language utilized. Different hardware, an optimised version of my code or an
implementation in a different programming language would lead to different results and different time
constraints under which one has to operate. It should be kept in mind that many other norms could have
been utilized to create and implement other shrinkage estimator and that there would have been other
methods for objectifying the regressors used for an OLS based prediction, besides a PCA, like factor
analysis or other sorts of optimal subset selection. Last but not least it is also important to note that

the MSPE, , ;s or MSPE; ; as metric for evaluating the quality of the different models is only one option,
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alternatively information criteria or measures of fit, like the R? could have been utilized.

6 Conclusion

In this seminar paper, I presented various methods for prediction in a cross-section data setup with
many regressors. The comparison was conducted using a dataset concerning schools in California from
2013. The empirical comparison of the methods revealed that shrinkage estimators can achieve enormous
MSPE, ,  improvements relative to a simple OLS Regression with all variables. Even when the variables
are selected based on domain knowledge, a simple OLS Regression does not reach the MSPE, , ; level of
the shrinkage estimators, as Figure 2 shows. It seems to be the case, that at least for this data set and these
setups shrinkage estimator structurally outperform any form of OLS Regression that relies on handpicked
regressors. Interestingly, a PCA-based OLS Regression also does not reach the MSPE, , s level of the
shrinkage estimators, it even performs worse than some of the OLS Regressions that utilized handpicked
regressors. Thus, it turns out that for prediction in a cross-section data context with many regressors, if
the goal is MSPE, , ; minimization, shrinkage estimators are not only a viable solution for the problems
described in 2.3, but also perform structurally better than any of the other solutions discussed, at least
for this data set. But if the goal is maximizing MSPE, , ; reduction per unit of time and if one can allow
for subjectivity and has the necessary domain knowledge utilizing an OLS Regression with handpicked
regressors leads to optimal results. If subjectivity has to be eradicated for the analysis or handpicking
regressors is infeasable, the next best option for maximizing MSPE, , ; reduction per unit of time is a
PCA-based OLS Regression.
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